OTC Annual Meeting June 3, 2016 Hotel Palomar Philadelphia, PA

Ali Mirzakhalili, P.E. Stationary and Area Source Committee Update

1

Overview

• Review of Stationary Source Committee Charge

 Status of Committee's Deliverables for 2016 Annual Meeting

Committee Charge

Identify potential emission reduction strategies to consider at the 2016 Fall Meeting, through:

- Largest NO_x and VOC Contributor Analysis
- High Electricity Demand and Emergency Generator
 Information
- Reasonably Available Control Technology for NO_{X} and VOC

Status of Committee's Deliverables

- 1. ICI Boiler Whitepaper Published Final Draft*
- 2. Energy Sector continued analysis of:
 - A. Top 25 NOx emitters
 - B. EGU utilization by fuel type
 - C. HEDD
 - Back-up Generators (BUGs)
 - Smaller EGUs (<25 MW) not in CAMD
 - D. Air quality impact
 - E. CSAPR
- 3. Workgroup updates

ICI Boiler Workgroup Update

Finalized White Paper after Stakeholder feedback period last Fall

Conclusions from the White Paper:

• NO_x and SO₂ decrease:

2007 - 2011	NE + VA
NOx	↓ 22%
SO ₂	↓ 40%

Modest NO_x decreases expected between 2011 - 2018:

	NE		SE		
↓	5%	↓	11%		

• Percentage of annual ICI boiler **NO_x** emissions compared to all sectors:

	NE, MW, & SE	CONUS
2011	6-7%	5%
2018	9-10%	7%

<u>Potential Next Step</u>: Evaluation of existing state limits, and whether new limits are warranted

Top 25 NO_X Emitters – 2015 Ozone Season

Many Units with SCR Operating above the Best Observed Rate

State	Facility Name	Facility - Unit ID	NOx (tons)	Avg. NOx Rate (Ib/MMBtu)	SCR?	Best Observed Rate (lb/MMBtu)	Year
IN	Rockport	6166 - MB1	3,976	0.208			
IN	Rockport	6166 - MB2	3,677	0.207			
LA	Ninemile Point	1403 – 5	3,008	0.319			
wv	Harrison Power Station	3944 – 3	2,965	0.342	Y	0.066	2005
AR	White Bluff	6009 – 1	2,898	0.276			
WV	Harrison Power Station	3944 – 2	2,855	0.364	Y	0.066	2005
LA	Ninemile Point	1403 – 4	2,717	0.343			
PA	Homer City	3122 – 1	2,624	0.351	Y	0.067	2006
OH	Avon Lake Power Plant	2836 – 12	2,617	0.396			
NC	Marshall	2727 – 4	2,460	0.272			
PA	Bruce Mansfield	6094 – 1	2,409	0.242	Y	0.076	2004
AR	White Bluff	6009 – 2	2,398	0.286			
PA	Conemaugh*	3118 – 1	2,353	0.227	Y	-	-
PA	Montour, LLC	3149 – 1	2,246	0.309	Y	0.044	2003
PA	Montour, LLC	3149 – 2	2,203	0.336	Y	0.047	2003
PA	Keystone	3136 – 1	2,198	0.232	Y	0.042	2003
wv	Harrison Power Station	3944 – 1	2,155	0.318	Y	0.063	2005
PA	Homer City	3122 – 3	2,131	0.282	Y	0.087	2005
PA	Brunner Island, LLC	3140 – 3	2,111	0.325			
PA	Conemaugh*	3118 – 2	2,012	0.200	Y	-	-
wv	Mountaineer (1301)	6264 – 1	1,979	0.108	Y	0.039	2007
AR	Flint Creek Power Plant	6138 – 1	1,970	0.264			
IN	IPL - Petersburg Generating Station	994 – 4	1,946	0.264			
PA	Keystone	3136 – 2	1,907	0.243	Y	0.043	2008
AR	Independence	6641 - 1	1,771	0.239			

*Conemaugh installed SCR in 2014; not enough data to determine Best Observed Rate.

CSAPR Allowance Prices (4/17/15 - 4/29/16)

Annual NOx

-S & L Low NOx Operating Cost Estimate

----Ozone Season NOx

Allowance Price Data Source: Argus Air Daily, Control cost estimates calculated using Sargent and Lundy method

Cheaper to Buy Allowances than to Run Controls!

Utilization of EGUs Based on Fuel Type

Analysis of the Utilization of Coal-Fired EGU Resources:

Last decade \rightarrow significant shift in the makeup of the EGU fleet operating in PJM states that have been primarily served by coal-fired units.

Some contributing factors:

- Long term effects of deregulation
- Various environmental programs and initiatives
- Renewables requirements
- Utilization of demand response resources
- Improved availability of relatively low cost natural gas

of EGUs Operating Annually in MD-OH-PA-VA-WV

-Gas CC -Coal -Oil/Gas Steam -Oil CT -Gas CT

MD-OH-PA-VA-WV During PJM Demand Response Events

High Electricity Demand Days (HEDD)

On HEDD more electricity generation than usual is required for reliability

- More generation \rightarrow more emissions
- Typical HEDDs are hot, humid days that are already conducive to high ozone
- Therefore the higher emissions occur at the same time as ozone conducive weather

Some emissions are not reflected properly in OTC Modeling and needed improvement

- Back-up Generators (BUGs)
- Smaller EGUs not in CAMD (<25 MW)

Emissions Estimates for BUGs

NO_x Emissions in Tons/Day (or Tons/"Event")

Small EGU Units (<25 MW)

Typically operate for limited time during HEDDs, when larger units are offline for I/M, or to ensure grid reliability

<u>Challenge:</u> Getting peak day emissions right with SMOKE processing

- Default temporal profiles smear emissions fairly evenly throughout the year
- Need to develop operating profiles without CEMS data

<u>Solution:</u> MDE developed more realistic temporal profiles for coal, oil and gas-fired Small EGUs, through:

- Changed the hourly distribution of annual emissions
- Allocated emissions based on CAMD data from peaking units slightly larger than 25 MW

Small EGUs Current Status

Completed :

- Selected universe of small EGU units
- Held state comment period to refine list of units
- Completed 2-week July CMAQ model runs using new temporal profiles

Next Steps:

- Requested additional state comments
- Incorporate temporal profiles into Beta modeling platform

Ozone Impact of Not Running Existing Controls Lost Benefit of 413 Tons/Day

Ozone-Season NOx (Tons)		
Reference	ce 175,700	
3A	112,400	
Differen	ce 63,300	

HEDD Example: Ozone Impact on July 21, 2011

Difference in Daily Maximum 8-hour Ozone

In some areas on HEDDs:

- BUGs can have an impact of up to **1 ppb**
- Small EGU units (<25 MW) can have an impact of up to 5 ppb

CSAPR Updates

DC Circuit:

- 2014 O3-season NO_X budgets for FL, MD, NJ, NY, NC, OH, PA, SC, TX, VA, and WV invalid
- Remanded to EPA without *vacatur* for

reconsideration

Consumer Products/AIM Update

Goal: Establish framework for a voluntary program which earns SIP credit while working with states, EPA, and industry

- National rule preferred, but EPA action is stagnant
- State by state rule adoption resource intensive and not uniform

RACT Compendium

- Compiling and evaluating each state's NO_X and VOC limits for source categories
- Reviewing CTGs
- States are in the process of providing information on their RACT SIPs for the compendium

Vapor Recovery

- MD has proposed and DE has approved regulations for Stage II programs
- Continue to improve Stage I

Questions?

